The materials and works contained within EPE Online — which are made available by Wimborne Publishing Ltd and TechBites Interactive Inc — are copyrighted.

TechBites Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, TechBites Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose.

Because of possible variances in the quality and condition of materials and workmanship used by readers, EPE Online, its publishers and agents disclaim any responsibility for the safe and proper functioning of reader-constructed projects based on or from information published in these materials and works.

In no event shall TechBites Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing, performance, or use of these materials and works.

READERS’ TECHNICAL ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years’ old. We are not able to answer technical queries on the phone.

PROJECTS AND CIRCUITS

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. A number of projects and circuits published in EPE employ voltages that can be lethal. You should not build, test, modify or renovate any item of mains-powered equipment unless you fully understand the safety aspects involved and you use an RCD adaptor.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured; these can be supplied by advertisers in our publication Practical Everyday Electronics. Our web site is located at www.epemag.com

We advise readers to check that all parts are still available before commencing any project.

To order you copy for only $18.95 for 12 issues go to www.epemag.com
RETURNNING from holiday, Editor Mike commented to the author that he had seen an interesting world clock display at his hotel. It consisted of a world map across which was a series of light emitting diodes whose brilliance portrayed local time-zone daylight conditions. Could the author design one?

As with so many questions these days, it seemed that the Internet could well provide an answer. The first thing to ascertain was what such a clock might actually look like in detail. Search engine www.google.com was opened and told to search on various combinations of words such as world, time-zone and clock, amongst others.

World clock produced an astonishing number of web sites, but none that showed the display looked for. However, one of the sites revealed the screen dump shown in Fig.1. This set the author along a completely different thinking path.

In EPE Feb '01, his article Using Graphics L.C.D.s had been presented. Could this l.c.d. (liquid crystal display) be used to portray a world map? Following a letter about bitmaps and l.c.d.s from Javier Fernandez published in Readout Nov '01, the author knew that, in principle, it was possible to produce a screen dump of any image and process it for loading into a PIC microprocessor for output into graphics L.C.D.s.

Before discussing how this was finally achieved, it is pertinent to say now that the end result is a PIC16F877-based circuit whose graphics l.c.d. shows the following:

- Simplified World map
- Current UK clock and calendar data
- Clock data for any other time-zone, adjustable via switches
- Flasing marker for sun’s current highest position, i.e. true noon at that longitude (angle in relation to 0°, GMT, Greenwich Mean Time, London).
- Marker’s position vertically (latitude) varies with the weeks and months throughout the year, spanning the Tropics of Capricorn and Cancer.
- Multi-paged text display of 150 major cities and their time-zone displacements in relation to GMT (e.g. New York –5 hours, Sydney +11 hours)
- Additional city time-zones can be readily added by those readers who have PIC Toolkit Mk2 or Mk3 (TK3 V1.2 or higher).
- Accuracy of clock time-keeping adjustable via switches.
- Principal clock and calendar data stored in the PIC’s non-volatile EEPROM (electrically erasable programmable read-only memory) for recall in the event of power failure.
- Runs from a mains powered 9V battery adaptor, plus standby battery back-up.

MAP CONCEPT

When the Print Screen button of a PC’s keyboard is pressed, the image on-screen at that moment is copied into the Windows

EPE PIC WORLD CLOCK

JOHN BECKER

Graphically displays calendar, clock and global time-zone data.

Fig.1. Real-time world clock as displayed by www.world-clock.org.
Using QuickBasic (QB), it was then established which aspects of the saved file data were Paint format commands and which were image data. A program was written which split the required data from the rest, converted it from binary to decimal values, to which a prefix of several spaces and a command RETLW were added. The author had ensured that exactly 128 x 64 pixel values were processed, resulting in 1024 commands.

The file was saved with a .INC extension so that the PIC could import it as an Include file.

It has to be said that the process was not actually as straightforward as suggested by the foregoing. There were many stages of experimentation with this hitherto unknown technique before a satisfactory result was achieved.

PIC JUMP CAPACITY

A parallel problem to be solved was how this data could be used with a PIC16F877. The author already knew that the PCLATH command could allow table data to be stored in PIC program memory beyond the basic limitation of the first 256 bytes.

The problem was, he had never used it before. Much PIC experimentation ensued (Microchip data can be very short in adequate detail on occasions!). Eventually, using various PCLATH values, it was found that not only could data tables be stored in separate 256 blocks beyond program address 255, but that the data could be loaded as a single table containing almost as many RETLW data commands as there were program memory locations still available.

It turned out that not all jumps were accessible, however. The first address for any table has to be (at least) ADDWF PCL,F, which removes this location from the table's use. Additionally, only 254 locations in each subsequent block of 256 commands could be accessed. Trying to access the 256th always took the program counter PCL into the "unknown" (as far as it was concerned) with a resulting "hang-up" of the program (as when tables in the normal address block 0 to 255 are too long).

With the map data it did not matter if the 256th byte data was not used, since it was known to be a screen border character which could be sent to the I.C.D. separately.

It did matter, though, with the table of city time-zone factors (see later). These are also held as consecutive RETLW data values and without formatting spaces, to conserve space. Each final byte of each block could not be ignored as with the map. The solution was to insert an additional data byte at every multiple of 256 bytes. An asterisk was used, but it could be any character.

This table is also stored as an Include file.

PCLATH USE

Associated with using PCLATH for extended table jumps was the need to also use this command to access PIC addresses $0800 (decimal 2048) upwards. This was

LISTING 1. Map display routine (TASM dialect)

```
MAP: clr PCLATH ; reset PCLATH to zero
clrf Address ; * set I.C.D. graphics column
movlw 0 ; * set I.C.D. graphics line number to zero
movlw 0 ; * set line length
call SCREENADR ; * set I.C.D. screen address to these values
movlw AWRON ; * load W with Auto Write On value
call SENDCMD
clrf LOOPE ; * send this command value to I.C.D.
clf LOOPE, W ; clear table address counter
clf MAP, W ; load table address into W
clf WCLOCK ; call Map table commencing at $0800
bsf PCLATH,3 ; set PCLATH for program memory block $0800
clf Table address counter
movlw 0 ; load table address into W
incf PCLATH,F ; increment table counter
bcf PCLATH,3 ; clear PCLATH from block $0800 to block $0000
bsf PCLATH,3 ; set PCLATH for program memory block $0800
movlw 0 ; load W with Auto Write Off value
 movlw AWROFF ; * load W with Auto Write Off value
incf PCLATH,F ; increment table counter
bcf PCLATH,3 ; clear PCLATH from block $0800 to block $0000
bsf PCLATH,3 ; set PCLATH for program memory block $0800
movlw 0 ; load W with Auto Write On value
 incf PCLATH, W ; clear I.C.D. from block $0800 to block $0000
 movlw 0 ; bit 0-2 unchanged
 movlw 1 ; preset W with value of 1 (for RHS border)
 movlw 0 ; is Status bit Zero = 1 (equality)?
 movlw 0 ; no, border not needed as map display ended
 call OUTDATA ; * send appropriate border value to I.C.D.
call LOOP ; * clear loop counter to zero
incf PCLATH,F ; inc PCLATH for next table block of 256
movf PCLATH, W ; is table block count now = 4?
call OUTDATA ; * limit check to within value of 7
movlw 3 ; do = 3 check
movlw 1 ; is Status bit Zero = 1 (equality)?
movlw 0 ; no, border not needed as map display ended
movlw 0 ; * send appropriate border value to I.C.D.
call LOOP ; * clear loop counter to zero
incf PCLATH,F ; inc PCLATH for next table block of 256
movf PCLATH, W ; is table block count now = 4?
call OUTDATA ; * limit check to within value of 7
movlw 4 ; do = 4 check
movf PCLATH, W ; is Status bit Zero = 1 (equality)?
goto MAP ; not yet, so repeat data get and send
movf PCLATH, W ; yes, so is PCLATH now pointing to sub-page 3?
call LOTH from block $0800 to block $0000
movlw 0 ; but leave bits 0-2 unchanged
movlw 0 ; * send table data to I.C.D. via prog in block $0000
movlw 0 ; increment table counter
incf PCLATH,W ; inc counter again, but only into W
bsf STATUS.Z ; is it zero i.e. is table counter = 255
bsf STATUS.Z ; i.e. has end of 256 table block been reached?
goto MAP ; not yet, so repeat data get and send
movf PCLATH, W ; yes, so is PCLATH now pointing to sub-page 3?
call OUTDATA ; * limit check to within value of 7
movlw 3 ; do = 3 check
movlw 0 ; preset W with value of 1 (for RHS border)
call LOOP ; is Status bit Zero = 1 (equality)?
movlw 0 ; no, border not needed as map display ended
movlw 0 ; * send appropriate border value to I.C.D.
call LOOP ; * clear loop counter to zero
incf PCLATH,F ; inc PCLATH for next table block of 256
movf PCLATH, W ; is table block count now = 4?
call OUTDATA ; * limit check to within value of 7
movlw 4 ; do = 4 check
movf PCLATH, W ; is Status bit Zero = 1 (equality)?
goto MAP ; not yet, repeat for next block
movf PCLATH, W ; yes, fully clear PCLATH back to zero
movlw AWROFF ; * load W with Auto Write Off value
call SENDING ; * send this command value to I.C.D.
return ; return to main program
```
the author’s first foray into that region, and also needed research.

Some readers may not appreciate that large-capacity PICs have this limitation. Program memory addresses are split into blocks of 2048, each of which requires PCLATH to be set accordingly, in addition to setting it for individual blocks of 256 within the main block when tables are embedded there. The 2048 limitation does not affect the PIC16F84, of course, since this only has 1024 memory locations anyway, but it can affect the PIC16F873 or PIC18F4520 when the extra program memory capacity is required.

At the time the author was working on this PIC World Clock, John Waller’s article “Using the PIC’s PCLATH Command” had not yet been discussed with him, let alone published (as it was last month, July ’02). Readers now have access to John’s information so PCLATH will not be discussed further in detail here.

It is, however, appropriate to show an extract of the program listing associated with displaying the map. See Listing 1.

The commands and sub-routines called and marked by an asterisk are those which had been discussed in detail in the Using Graphics L.C.D. article previously mentioned. All the graphics L.C.D. routines used are those discussed there, and used here as “library” routines.

CIRCUIT DIAGRAM

Whilst the software is the longest that the author has written for a PIC (around 5500 commands), the circuit is one of the simplest. Its schematic diagram is shown in Fig.3. The PIC16F877 is noted as IC1. It simply runs its program and controls the data output to the graphics L.C.D. X2. Additionally, it responds in various ways to switches S1 to S9 being pressed, more on this later.

If considering using a different L.C.D. to the Powertip PG12864 recommended, ensure that it is based on a Toshiba T6963C controller.

The PIC is powered at +5V, as supplied by regulator IC2, which may be powered at between about 7V and 12V d.c. Capacitors C3 to C5, plus C8, simply help to maintain power line stability.

As discussed in Using Graphics L.C.D.s, the Powertip graphics L.C.D. module requires a split supply of +5V, 0V and -5V. The latter is generated by the d.c.-to-d.c. voltage converter IC3. This produces a -5V d.c. output when powered from a +5V supply.

It is a switched-mode device (frequently seen in EPE designs) whose oscillation frequency is set by capacitor C6. The output voltage is smoothed by C7. The L.C.D. screen contrast is determined by the current flowing from its pin 4 (CX) into the negative line, and is controllable by preset VR1.

The PIC is operated at 3.2768MHz, as set by crystal X1 in conjunction with capacitors C1 and C2.

It can be programmed in situ from a PIC programmer such as Toolkit Mk2 or Mk3. The World Clock software and preprogrammed PICs are available as stated later.

Diode D1 and resistor R1 allow the PIC to be correctly controlled when being programmed. They also provide bias to Reset switch S4, whose function is described later. Do not omit these two components even if you do not intend to program the PIC yourself.

Terminal block TB1 provides access to the PIC’s programming pins.

A “belt and braces” option is provide for power input. Surprisingly, the circuit draws around 18mA, much of which is demanded by the L.C.D. Even making use of the PIC’s SLEEP mode with interrupts did little to reduce the overall consumption. Consequently, continuous operation of the clock from a 9V PP3 battery is unrealistic.

Instead, the unit should normally be powered from a battery adaptor having an output of around 9V d.c. A PP3 battery can be used as a back-up supply in the event of a mains power failure, and a battery holder is included on the printed circuit board (p.c.b.) for this purpose. Diodes D2 and D3 prevent the battery and adaptor supply from mutual interference, allowing the battery to take over if the mains supply fails.

CONSTRUCTION

The p.c.b., component and track layout details are shown in Fig.4. This board is available from the EPE PCB Service, code 363.

It has also been designed as a general purpose board for use in other simple PIC16F877/graphics L.C.D. applications. Consequently, additional holes are provided to allow access to the otherwise unused PIC port pins. They should be ignored in this application.

Commence construction by soldering in the several link wires, noting that a few are positioned below IC1 and IC3. Dual-in-line (d.i.l.) sockets should be used for both these i.c.s. Do not insert these i.c.s themselves until the first stage of power checking has been performed. The same caution applies to the L.C.D. as well.
Assemble the other few components in any order you prefer. Leave the battery holder until last.

Thoroughly check your board for poor soldering and other errors, and then connect the 9V mains adaptor. Check that regulator IC2 outputs +5V, within a few per cent. If not, switch off and remedy the cause of malfunction.

When testing, if the unit does not behave as expected, and when inserting or extracting the i.c.s, always disconnect the power.

When satisfied with the +5V output, plug in d.c. converter IC3 and check that it outputs –5V, again within a few per cent. If this is satisfactory as well, connect the l.c.d. to its designated p.c.b. pins, which are in exactly the same order as on the l.c.d. itself. Ribbon cable was directly soldered to terminal pins on the prototype, but a p.c.b. mounting 0-1 inch pitch 18-way pin-header strip with connector could be used if preferred.
On powering up, adjust preset VR1 until a change in l.c.d. screen colour is observed. Adjust VR1 until the background shows a very light shade of blue (might be grey with some makes of l.c.d.).

Next the PIC can be inserted and, if it has not been preprogrammed, it can be programmed now, using a suitable programmer, as stated above.

ENCLOSURE

It was originally conceived that the PIC World Clock could look more interesting if not enclosed in a box. Consequently the p.c.b. was designed to be bolted behind the l.c.d., and for the “sandwich” to be bolted to a perspex sheet mounted in a low-cost picture frame. Access to the switches is then from behind the assembly.

Ultimately, however, the author used the same box as previously used in another design. As a result switches S1 to S3 and SK1 were mounted in the case (although S1 to S3 are still to be seen in the photograph of the p.c.b.). Do not mount S4 in the box leave it on the p.c.b.

SOFTWARE CHECKS

With the unit running under PIC control, the first action that will be seen is that the screen should show a display similar to that in photo below left. If necessary, adjust VR1 until the contrast is suitable.

A rudimentary map of the world will be seen, with three lines of text superimposed on a partly blanked area. Pressing and releasing switch S1 steps this value in a cycle from 0 to 2 and back to 0. Set your current tens of hours now.

Pressing switch S2 steps the cursor to the units of hours. Using S1, these cycle through 0 to 9 followed by a rollover to 0 when the tens of hours show 0 or 1. If the tens show a value of 2, the rollover of the units is after 3 (24 hours clock).

Switch S2 progressively steps through the minutes digits, selectable by S1 again, with a rollover limitation of 59. To suit the program’s correct use of calender factors, the next steps are to the tens and units of years, with a rollover after 99. It is worth noting that Microchip only guarantee retention of a PIC’s program contents for 40 years, so a year value of 99 is grossly over-optimistic!

Next the month can be set. This cycles from JAN to DEC followed by rollover. Tens and units of days in the month are next, with rollover limits set by the conventional number of days in any named month, with automatic allowance for leap years if the month is FEB.

The named day of the week follows, MON to SUN, with a 7-day rollover.

CLOCK ACCURACY

The next press of switch S2 sets the program into clock accuracy adjustment mode. This is prefixed by the symbols +/- followed (when first used) by +0000, the cursor flashing on the forward-slash symbol. Switch S1 continues to step count values upwards, but S2 now causes a downwards count. The full range is –9999 to +9999.

Whilst the PIC is crystal controlled, when used in clock-type applications there is normally an inherent slippage of accuracy over time, partly due to the crystal frequency not being at an exact value, due to normal component tolerance factors. An additional slippage can occur because of very slight inconsistencies in the rate at which the PIC’s internal timing counter is accessed.

In a long-term clock design, such as this is intended to be (40 years, anyway!), it is desirable that the clock rate can be adjusted in the light of experience, as with many types of normal clock.

To cope with this, the software has been written so that the amount by which the clock registers are incremented is adjustable according to externally set values.

In simple PIC clock designs, the TMR0 counter is set so that it rolls over at, say, every 1/25th of a second. Counting 25 of these rollovers then equals a one-second time lapse.

In this design, though, TMR0 is set to roll over once every 1/50th of a second. On each occasion, a 3-byte counter has a preset value added to it. This includes an adjustment factor as set by the user. With no adjustment factor set, this counter rolls over once for every two TMR0 rollovers (i.e. at every 1/25th of a second).

When first used, the software sets the 3-byte counter to a decimal value held as MSB = 128, NMSB = 0, LSB = 0. Two additions of this value cause the MSB to rollover and set a separate register flag. Only if this flag = 1 is another counter incremented, whereupon the flag is reset.

Only when this counter has incremented 25 times is the seconds register incremented. In fact, for programming ease, the
intermediate counter is preloaded with a value of 25, and then decremented down to zero, at which point it is reset to 25 and the seconds counter incremented.

It will be seen that if the 3-byte counter is preset with a value greater than 128, 0, 0, then its MSB rollover will be faster than just described. Similarly, the rollover will be slower if the preset value is lower.

Each unit of change, set via S1 or S2, in the adjustment count value shown on screen, represents one second of change every 4,194,304 seconds. There are approximately one million seconds in 11.5 days, so the potential for clock setting accuracy is good.

It is worth understanding, though, that a crystal’s frequency can drift fractionally with temperature and age.

This technique was first used in the author’s Countine Tide Predictor of June ’00 and has proved remarkably accurate. Implementing any adjustment should only be carried out after several days of observation to determine how much the clock has drifted over that time, and then to apply an adjustment calculated in relation to the above four million ratio.

At this stage of use, the adjustment factor should left at zero.

GLOBAL DISPLAY

Having adjusted the clock and calendar values, press switch S3. This first stores the values to the PIC’s EEPROM, where they remain even after power loss, to be recalled when power is restored. The screen is then cleared of the data setting display, to reveal the world map as below:

Typical World Clock display when in normal running mode.

To the left of the map are shown the calendar values, which will be kept updated for as long as the clock is powered. At the bottom left of the screen the current hours and minutes time is shown, plus a seconds counter. To the right is shown another hours and minutes display, prefixed by the letter L, meaning Local. Currently it will be showing the same time as the first clock.

One of the functions of the World Clock is to allow a principal time to be shown for the UK and for a secondary time to be shown in relation to any time-zone across the globe, i.e. Local time in that zone.

In the middle of the screen is a vertical dotted line passing through what would be seen as roughly London on a better definition display. Pressing switch S1 shifts this line to the east in large steps, of about 1 hour 30 minutes. The time-step values are automatically added to the UK time and displayed as Local time for the longitude indicated by the line.

Having reached the eastern map edge, the line then reappears from the west.

Crossing the full map represents 24 hours.

Pressing switch S2 moves the line in smaller increments, 128 steps across the screen. This allows the line to be more precisely set in relation to the map. The line can only be moved in an easterly direction. Its position is never stored to EEPROM and returns to its default position (UK) should power be lost and then restored (or the Reset switch, S4, pressed – see later).

SOLAR AND NATIONAL TIME-ZONES

Greenwich, UK, is regarded as having a longitude of zero. Because the Earth is roughly a globe, it is said to have a circumference of 360°. Consequently, for a 15° shift westwards of the sun from a noon position above Greenwich at 0° means a one hour time zone shift (240/360 = 1/1.5 = 1.00pm).

Solar noon is now at this 15° position, and the time at Greenwich has become 1.00pm.

However, what about the time actually experienced by the positions under the solar noon position? What about EPE in Dorset, 2° west of Greenwich? Do we experience noon at 2° = 8 minutes later than Greenwich? No, of course not, when it’s noon at Greenwich it’s noon at EPE! (Although some of us might feel wish it were actually Spain).

Interestingly, it was only with the increasing use of the railways, that, in 1880, at an international conference of 27 nations, in Washington DC, national and international time-zones became agreed. Although, with Greenwich at 0° meridian. Prior to that local noons were at different instants to each other. Improved transport systems, though, required consistent timekeeping.

Generally speaking, time-zones change in steps of 30 minutes, although there are occasional differences, where a 15-minute step might occur.

As a result, France, for instance, is in a time-zone one hour ahead of the UK (+1 hour) even though much of it is due south of the UK. New York is five hours behind Greenwich (~5 hours), but because of the shape of the USA, e.g. McGowen, which has a time-zone displacement of ~6 hours from the UK. Curiously, despite its size, China has only one time-zone.

TIMELY DILEMMA

These facts presented the author with an initial dilemma. Should the dotted time-zone line have its clock display increment-ed to suit solar time, or local time? And, if the latter, then which national time zone, since some countries along that line could have adopted different displacements in relation to Greenwich.

It was decided that the Local clock should only be incremented in steps of 30 minutes and in relation to solar noon. Thus most of France will appear to be in the same solar time zone as the UK. Intelligent assessment of the line’s position in relation to the displayed Local time must be used!

Only if a much larger display were to be used could there be any chance of tai-loring regional time-zones to the geographic location under the line. In other words, a PIC and simple LCD are not up to that degree of accuracy. If you need more accuracy, use a computer and browse appropriate sites via the Internet (such as listed later!)

To comply with the 30-minute stepped update, a look-up table is used, which allocates whether a value of 30 or 0 minutes is added to the Local time display at each increment of the line.

In early stages of program development, the Local time was in fact incremented according to actual solar time. This required a value of 11 minutes 15 seconds to be added for each of the 128 increments.

SOLAR SEASON

Whilst the sun appears to move round the Earth in a westerly direction, the Earth rotates eastwards to greet the rising sun, of course. Surprisingly, doing a “straw poll” recently, the author found that the correct answer was not always given. But even the illusory SF author Arthur C. Clarke is said to have wrongly stated the Earth’s direction of rotation in one of his books!

Because of the Earth’s tilt on its axis, the sun’s overhead position changes in latitude throughout the year as the Earth travels around sun. An indication of this has been added to the display. A flashing 4-pixel vertical line travels across the map indicating where solar noon is occurring.

The flashing noon line also changes position vertically throughout the year, tracking between the Tropic of Capricorn (northern hemisphere) and the Tropic of Cancer (southern). This is calculated in relation to the stated month and its numbered day, and makes use of more look-up tables. The position is only an approximation – don’t navigate by it (hey, who’s moved America?)!

CITY TIME-ZONES

Having discovered the benefits of using PCLATH with a large-capacity PIC, it became obvious that lots more table data could be added to the software. This resulted in City time-zone displacements being downloaded from the web, at www.timeanddate.com, whose information is presented in real time in relation to local time of the user, as follows, for example:

Example display of international time at www.timeanddate.com.

Using QB, these were analysed, formatted into a look-up table, and imported to the PIC as another .INC file.

The following is an extract, in relation to New York, showing a ~5 minute time difference from UK time. Note the “&” end of name marker and the “*” 256-jump padder referred to earlier:
ADDING CITIES

Readers who have the Toolkit TK3 V1.2 (or MPASM) software update can add their own cities to the TIME-ZONE.INC file, and then re-assemble and send to the PIC. Note that only the revised TK3 software (TK3 V1.2 or later) can handle PIC addresses from $0F00 onwards.

There are over 3000 program memory locations that could be filled. However, if the TIME-ZONE table extends into the next 2048 block, changes to the PCLATH control (using PCLATH bits 4 and 3) would need to be made.

As things stand, 550 additional characters could be added to the .INC file without crossing the next 2K boundary, after $1FFF.

To add names, TK3’s Include File Edit/View Facility can be used. First use its DIR button to select file TIME-ZONE.INC. Open the file via the Edit Incl button.

Split the city name into individual letters and enter them in order in an alphabetically suitable place within the file, in the same way that the other letters are treated. Follow the name with the time displacement value, and use the “&” symbol to indicate the end of that city’s data. Do not use space (“ ”) characters unless they are part of the name.

City names can also be deleted.

Be aware that adding or deleting RETLW commands will affect the 256 jump allocation beyond that point. The author used DOS EDIT to correct for this as it has a good line counter. At each line count multiple of 256 (i.e. 256, 512, 768, 1024, 1280, etc.) insert the RETLW “*” separator, as done in the original file, removing the author’s inserts as necessary.

Failure to do so will ‘crash’ the program, but will leave only more asterisks to be seen and with consequential non-display of some characters.

The final entry of RETLW “#” must be retained, removing it could cause the PIC program to “crash” on the final page of city display.

Re-save the file once corrected, reassemble from ASM to HEX and program the PIC with the new HEX code.

ZONE HOME ET!

It is perfectly feasible for non-UK readers to set their own time zone values into the clock in place of UK time. However, this will have two side-effects.

Firstly, the solar noon flashing line will continue to think that the time is still related to GMT. No facility to change this has been included.

Secondly, the city time-zone displacement text values will become invalid. This can be amended if Toolkit TK3 V1.2 or MPASM is used.

Accessing the web site stated later, view the times quoted for the various cities in relation to the zone from which you have entered the site. Calculate and note the displacement. Amend the TIME-ZONE.INC file so that the new values replace the GMT ones. Then resave and proceed as described in the previous section.

GENERAL USE

There are three situations in which the calendar and clock data are stored to the PIC’s data EEPROM: following a program reset after a total power failure restoration or by deliberate intent; at each midnight rollover; and when the Cities text display is entered.

To have updated the EEPROM on a more frequent regular timed basis would undesirably use up its theoretical life expectancy, which value could not be found in Microchip’s data for the PIC16F877, but is believed to be about 10,000 write cycles. In fact, the author believes that over the years of using the same PICs over and over in different applications, the write cycle count has probably been well exceeded on several of them, without failure.

Should a Reset occur, the currently stored data will be recalled and displayed on-screen as first described earlier. In the event of a short halt in running, the time and calendar data will need little adjustment.

To allow the clock to be adjusted, a fourth switch has been included, Reset switch S4. This is connected to the PIC’s MCLR line and physically resets the PIC so that it starts running the program from the beginning.

Any time or calendar values can now be adjusted, pressing the switches as before, ignoring any values that do not need adjustment. At any stage, if the remaining values do not need to be changed, press switch S3 to jump straight into map display mode.

Before using Reset switch S4, first press S3 to enter the City text display, which will cause the current time to be saved, for immediate recall following S4 being pressed.

TIMELY END

Apart from describing a novel time-zone clock-calendar, it is hoped that this article has provided you with further thoughts about using PCLATH, accessing very long look-up tables, crossing Page boundaries, and using screen dumps to obtain data for loading into a graphics l.c.d. via a PIC microcontroller.

May the sun always cross your zone!

RELATED WEB SITES

www.timeanddate.com/worldclock/
World Clock Time-zones – current times for global cities.

www.world-clock.org, Visual Map of the World’s Time – Imagery by Matthew Kaufman, the site which inspired the l.c.d.

www.google.com, Excellent search engine – says it contains 1,960,000 sites related to searching on the command World Clock. Both the above sites are on the first page of its display.

SOFTWARE

The software for the PIC World Clock is available on 3.5-inch disk (for which a small handling charge applies) from the EPE Editorial Office. It is also available for free download from the EPE ftp site, which is most easily accessed via the click-link option at the top of the screen page when you enter the main web site at www.epmag.wimborne.co.uk.

On entry to the ftp site take the path PUB – PICS – WORLDCLK, downloading all files within the latter folder.

For information about obtaining components and preprogrammed PICs for this project, read the Shoptalk page in this issue.
April '01
Projects: Wave Sound Effect • Intruder Alarm Control Panel • Sound Trigger • EPE Snap-Bug Pet Heating Control Centre.
Features: The Schmitt Trigger • Practical Speaking • Ingeny Unlimited • Circuit Surgery • New Technology Update • Net Work • The Internet Page.
May '01
Features: The Schmitt Trigger Part 7 • Interface • Circuit Surgery • Ingeny Unlimited • New Technology Update • Net Work • The Internet Page.
June '01
Projects: Hosepipe Controller • In-Circuit Checker • 2-Tone Siren • PIR Detector • Magnetic RS232 Interface.
Features: Controlling Jodrell Bank • PIC1687XT Extended Memory Use • Practically Speaking • Ingeny Unlimited • New Technology Update • Circuit Surgery • Net Work • The Internet Page.
July '01
Projects: Stereo/Surround Sound Amplifier • PIC to Printer Interface • Perpetual Projects 1 • Solar-Powered Power Supply and Voltage Regulator • MSF Signal Repeater and Indicator.
Features: The World of PICs • Ingeny Unlimited • Circuit Surgery • New Technology Update • Net Work • The Internet Page.
August '01
Projects: Digitimer • Lead-Acid Battery Charger • Compact Shortwave Loop Aerial • Perpetual Projects 2 • L.E.D. Flasher • Double Door-Buzzer.
Features: Controlling Power Generation • Ingeny Unlimited • Interface • Circuit Surgery • New Technology Update • Net Work • The Internet Page.
September '01
Projects: Water Monitor • L.E.D. Super Torch • Synchronous Clock Driver • Perpetual Projects 3 • Loop Burglar Alarm • Touch-Switch Door-Light • Solar-Powered Rain Alarm.
Features: Controlling Flight • Ingeny Unlimited • Practically Speaking • Circuit Surgery • New Technology Update • Net Work • The Internet Page.
October '01
Projects: PIC Toolkit MK3 • Camcorder Power Supply • 2-Way SW Receiver • Perpetual Projects 4 • Gate Sentinel • Bird Scarer • In-Outlet Regulator.
Features: Traffic Control • Ingeny Unlimited • New Technology Update • Circuit Surgery • New Technology Update • Ingeny Unlimited • Net Work • The Internet Page • Free 2 CD-ROMs • Microchip 2001 Tech Library.
November '01
Projects: Capacitance Meter • Pitch Switch • Lights Needed Alarm • Teach-In 2002 Power Supply.
Features: Teach-In 2002 Part 1 • Practically Speaking • Circuit Surgery • New Technology Update • Ingeny Unlimited • New Technology Update • Net Work • The Internet Page • Free 16-page Supplement • PIC Toolkit MK3 For Windows.
December '01
Projects: Ghost Buster • PIC Polywashish • Timing Lights • Maine Failure Alarm.
Features: Teach-In 2002 Part 2 • Marconi – The Father of Radio • Interface • Ingeny Unlimited • Circuit Surgery • New Technology Update • Net Work • The Internet Page 2001 Annual Index.
January '02
Projects: PIC Magikol Music • Time-Delay • Touch Switch • Versatile Bench Power Supply • Forever Flasher.
Features: Teach-In 2002 Part 3 • Practically Speaking • Ingeny Unlimited • New Technology Update • Circuit Surgery • Net Work • The Internet Page.
February '02
Projects: PIC Seminar Analyser • Graph Practice Amp • RF Power Supply • Versatile Current Monitor.
Features: Teach-In 2002 Part 4 • Ingeny Unlimited • Scissed Space Shuttle Revisted • Circuit Surgery • Interface • New Technology Update • Practically Speaking • Net Work • The Internet Page.
March '02
Projects: MK484 Shortwave Radio • PIC TV Interface • Digital Camera • RH Meter • PIC Mini-Enigma.
Features: Teach-In 2002 Part 5 • Ingeny Unlimited • Programming PIC Interrupts 1 • Circuit Surgery • Practically Speaking • New Technology Update • Net Work • The Internet Page.
APR '02
Projects: Electric Guitar Tuner • PIC Controlled Intruder Alarm • Solar Charge and Go • Manual Stepper Motor Controller.
Features: Teach-In 2002 Part 6 • Interface • Programming PIC Interrupts 2 • Circuit Surgery • Ingeny Unlimited • New Technology Update • Interface • Net Work • The Internet Page • FREE Giant Op.Amp Data Chart.
May '02
Projects: PIC Big-Digit Display • Simple Audio Circuits 1 • Freezer Alarm • Washing Ready Indicator.
Features: Teach-In 2002 Part 7 • Ingeny Unlimited • Practically Speaking • New Technology Update • Circuit Surgery • Net Work • The Internet Page.
June '02
Projects: Bippic Heartbeat Monitor • Frequency Standard Generator • Simple Audio Circuits 3 • Rotary Combination Lock.
Features: Teach-In 2002 Part 8 • Interface • New Technology Update • Circuit Surgery • Ingeny Unlimited • Net Work • The Internet Page.
July '02
Projects: EPE SybPic • Infra-Red Autoswitch • Simple Audio Circuits 4 • Rotary Combination Lock.
Features: Teach-In 2002 Part 9 • Practically Speaking • Using The PICs PCLATH Command • Ingeny Unlimited • Circuit Surgery • New Technology Update • Net Work • The Internet Page.
BACK ISSUES ONLY £3.30 each inc. UK p&p.
Overseas prices £3.80 each surface mail, £5.25 each airmail.
We can also supply issues from earlier years: 1998 (except Jan. to May, July, Nov., Dec.), 1999, 2000 (except Feb., July, 2001 (except May, Oct.). Where we do not have an issue a photocopy of any one article or one part of a series can be provided at the same price.

ORDER FORM – BACK ISSUES – PHOTOCOPIES – INDEXES

☐ Send back issues dated —— ——

☐ Send photocopies of (article title and issue date) —— ——

☐ Send copies of last five years indexes (£3.30 for five inc. p&p – Overseas £3.80 surface, £5.25 airmail)

Card No. —— —— —— ——

Card Expiry Date —— —— —— ——

Send to: EPE, c/o Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9AX.

Send NE: 01202 873872. Fax: 01202 874562.

E-mail: orders@epemag.wimborne.co.uk On-line Shop: www.epemag.wimborne.co.uk/shop/photos.htm

Payments must be in £ sterling – cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order.

Send a copy of this form, or order by letter if you do not wish to cut your issue.

PRINTED/PRODUCED IN ENGLAND FOR EVERYDAY PRACTICAL ELECTRONICS LTD. 806/808 WIMBORNE ROAD EAST, FERNDOWN, DORSET BH22 9AX. REPRODUCED BY PHOTOCOPIES. NO PART OF THIS PUBLICATION MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR OTHERWISE, WITHOUT THE PRIOR WRITTEN PERMISSION OF THE PUBLISHER.
STORE YOUR BACK ISSUES ON MINI CD-ROMS

A great way to buy EPE Back Issues – our mini CD-ROMs contain back issues from our EPE Online website plus bonus articles, all the relevant PIC software and web links. Note: no free gifts are included. All this for just £12.45 each including postage and packing.

NOTE: These mini CD-ROMs are suitable for use on any PC with a CD-ROM drive. They require Adobe Acrobat Reader (available free from the Internet – www.adobe.com/acrobat)

VOL 1 CONTENTS
BACK ISSUES – November 1998 to June 1999 (all the projects, features, news, IUs etc. from all eight issues). Note: No advertisements are included. PIC PROJECT CODES – All the available codes for the PIC-based projects published in these issues.

VOL 2 CONTENTS
BACK ISSUES – July 1999 to December 1999 (all the projects, features, news, IUs etc. from all six issues). Note: No advertisements are included. PIC PROJECT CODES – All the available codes for the PIC-based projects published in these issues.

VOL 3 CONTENTS
BACK ISSUES – January 2000 to June 2000 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES – All the available codes for the programmable projects in these issues.

VOL 4 CONTENTS
BACK ISSUES – July 2000 to Dec. 2000 (all the projects, features, news, IUs etc. from all six issues). PIC PROJECT CODES – All the available codes for the PIC-based projects in these issues.

VOL 5 CONTENTS
BACK ISSUES – January 2001 to July 2001 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES – All the available codes for the programmable projects in these issues, including those for Interface.

VOL 6 CONTENTS
BACK ISSUES – July 2001 to December 2001 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES – All the available codes for the programmable projects in these issues, including those for Interface.

EXTRA ARTICLES – ON ALL VOLUMES
BASIC SOLDERING GUIDE – Alan Winstonley’s internationally acclaimed fully illustrated guide UNDERSTANDING PASSIVE COMPONENTS – Introduction to the basic principles of passive components.

EXTRA ARTICLE ON VOL 1 & 2
THE LIFE & WORKS OF KONRAD ZUSE – a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.

ORDER ON-LINE
Order on-line from www.epemag.wimborne.co.uk/shopdoor.htm or www.epemag.com (USA $ prices) or by phone, Fax, E-mail or Post

BACK ISSUES MINI CD-ROM ORDER FORM
Please send me …….. (quantity) BACK ISSUES CD-ROM VOL 1
Please send me …….. (quantity) BACK ISSUES CD-ROM VOL 2
Please send me …….. (quantity) BACK ISSUES CD-ROM VOL 3
Please send me …….. (quantity) BACK ISSUES CD-ROM VOL 4
Please send me …….. (quantity) BACK ISSUES CD-ROM VOL 5

Price £12.45 each – includes postage to anywhere in the world.

Name ..
Address ..
Post Code ..

I enclose cheque/P.O./bank draft to the value of £

Please charge my Visa/Mastercard/Amex/Diners Club/Switch

Card No. .. Switch Issue No.

Expire Date .. Expiry Date

SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. E-mail: orders@epemag.wimborne.co.uk

Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order. Send a copy of this form, or order by letter if you do not wish to cut your issue.
Video Surveillance

- C-MOS B/W Camera 15mm/15mm £29.00
- C-MOS Colour Camera 15mm/15mm £65.00
- PCB B/W Camera 32mm/32mm £24.00
- PCB Colour Camera w/Audio 32mm/32mm £65.00
- 23cm (1.3GHz) Video/Audio Transmitter £35.00
- 13cm (2.4GHz) Video/Audio Transmitter £35.00
- 12 Watt 2.4GHz Video/Audio Transmitter £120.00
- 4" TFT Boxed Colour Monitor w/Audio £110.00
- Video to VGA Converter £65.00
- VGA to Video Converter £90.00
- External USB Video Capture Box £55.00

All prices exclude VAT.

Many more products on our website:

WWW.BITZTECHNOLOGY.COM
Tel: 01753 522 902 Fax: 01753 571 657

Wireless Remote Controls

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 channels RC-11 Key fob Control Transmitter with Rolling Code technology.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UC-216</th>
<th>Price: £29.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 channels receiver with 2 relays output working from 9V to 12Vdc</td>
<td></td>
</tr>
<tr>
<td>UC-216 with learning mode and rolling code technology.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UC-222</th>
<th>Price: £29.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 Vac</td>
<td></td>
</tr>
</tbody>
</table>

Also
- Wireless pager alarm PG-4W £125.00
- Wireless PIR alarm JA-60S £49.00
- Wireless door magnet alarm £39.00
- Wireless smoke alarm £49.00
- Wireless glass break alarm £49.00
- Wireless alarm control panel £99.00
- Wireless alarm control panel with digital /voice dialler £149.00

Distributors Welcome.

All prices exclude VAT and carriage. All transmitters are licence exempt working on 433.92Mhz. All transmitters work with rolling code technology.

Bitz Technology Ltd
sales@bitztechnology.com
+44 (0) 1753 522 902

Everyday Practical Electronics, August 2002
A revolution in evolution, and anyone can experiment with it

We hear about advances in electronics all the time – smaller circuits, faster chips, new devices and technologies. But there’s another revolution happening, one that in a few years may change electronics forever and perhaps even lead to the development of the first truly intelligent machines. This new revolution is called Evolutionary Electronics.

One of the most interesting and unusual attributes of this revolution is its accessibility to hobbyists. The answers to the big questions aren’t clear yet and the rewards for getting it right are immense. The experiments don’t need million dollar machines or laboratories, just access to some good computing equipment and a degree of ingenuity.

A CASE FOR EVOLUTION

The idea is simple. Suppose that we want to make a machine so complex that we don’t know how to design it. A good example would be the human brain – the most complex structure in the known universe. Where would we start? Well, we could look to nature; after all she has made incredibly complex machines – just look at us! But she’s done this not with conscious design, but through the power of evolution by natural selection.

We all know what evolution is; it’s a simple and elegant concept. If you take a population of animals which have random genes and leave them in a particular environment, those with good traits will survive and those that are not as fit will die. The animals which die may have problems like not being fast enough to outrun a predator or not tall enough to reach food.

The better-suited members of the population survive to breed and to mix and pass on their good traits to the next generation. In this way the population gets more suited for its environment and perhaps over many generations evolves into new species.

So, why not do the same with circuits? Set them up randomly, test how good they are (their fitness), and allow the best ones to survive and mix their traits (to breed!). Well, this can be done and it has been done with some very interesting results, as we will see. There are several ways of doing it, but the best known and most popular is called the Genetic Algorithm.

GENETIC ALGORITHM

The Genetic Algorithm, often called simply the GA, works like this. We code the system we want to evolve, in this case our circuit, as a string of numbers (we’ll come back to this shortly). We then set up a random population of these strings, usually between fifteen and fifty strings. We test them all to see how well the circuits they represent work (of course, right at the beginning, none of them will work very well). We then make another, new population, out of the old one, by copying across some of these new strings will have become fit enough to fulfill their functions (that’s the theory anyway). You can use either real numbers as shown above or binary numbers.

CHOOSING GA VALUES

This sort of technique is particularly useful for designing circuits like filters. All you need is a software simulator. You can use the GA strings to generate netlists, and off you go. For example, take the sort of circuit shown in Fig.2.

You can set up the string as shown, fill it with random numbers, generate a population and watch it evolve. In this case, the fitness of the circuit is how close the simulation and watch it evolve. In this case, the circuit shown in Fig.2.

This generates new strings. The idea is that some of these new strings will have the good traits from both parents and so be better than either.

The final part of the algorithm is called “Mutation” and is designed to add some variation into the population by introducing some new numbers to it. It simply involves choosing a few numbers from the strings and changing them by adding a random element. The algorithm is then repeated and after a few generations the circuits become fit enough to fulfill their functions (that’s the theory anyway). You can use either real numbers as shown above or binary numbers.

Fig.1. Strings breeding.

This is the pair after they have bred. Notice that they swap some of their information.

| L1, L2, C1, C2, C3. |

Fig.2. A typical filter circuit. In this case each string could be: L1, L2, C1, C2, C3.
CHOOSING GA CONNECTIONS

You can also get the GA to choose the wiring of the circuit (and even the components if you want). This time, rather than component values, the GA chooses which components are connected to which others. One way of doing this is shown in Fig.3.

Each wire in the circuit is given a node number. In this case a 11-bit number can encode the connections to a particular node. For example, if node one is connected to nodes three and seven as shown, the code would be 00010001000 the position of the “1”’s being three and seven (the first node is zero). The total string length would then be eleven times eleven (one connection code for each node of the circuit) or 121 bits.

You can think up other schemes easily; for example, the algorithm can, if you code it to, choose both the wiring and the component values at the same time.

EVOLUTIONARY ALGORITHMS

Although Evolutionary Algorithms like the GA are useful for choosing components in complex circuits where tradeoffs have to be made, like filters, their real promise lies in Artificial Intelligence. The two tenets of Evolutionary Connectionism (using Artificial Evolution to make networks of components in an attempt to create AI) can be stated as questions and answers:

Q. Is it possible to build a machine which is intelligent?

A. Yes, the brain is simply a machine and if nature can do it, eventually so can we.

Q. Is it possible to make a machine like this even if we don’t understand how it works?

A. Yes, nature used evolution to build it and again so can we.

Genetic Algorithms and their kin are being used right now to create Artificial Neural Networks (known as ANNs). These are networks of small processors, modelled on brain cells that can learn from experience, just like a real brain. Although these experiments have been quite successful in some respects there are many problems left to solve. After all, we haven’t succeeded in making a brain yet.

PROBLEMS

Although there have been some huge projects to try and produce large intelligent systems using Artificial Evolution (like that by Hugo de Garis, which produced circuits with literally millions of elements in them) none have really succeeded yet. That’s not to say that there haven’t been some interesting results (Adrian Thompson for example has succeeded in evolving large numbers of digital gates into a circuit which did some interesting and unusual things). The fact that the genes in your body produce a modular system is important. There is conclusive evidence to suggest that the brain is modular – for example, if you damage one part of it, you usually wipe out a very particular function.

Electronic systems too are modular; after all, you don’t start designing a radio system out of one enormous mass of components; you start by designing oscillators, amplifiers, mixers and suchlike separately. The reasons for brain modularity are complex and not all of them are clearly understood as yet.

So, can we conceive of a system which can evolve modularity in this way? The answer is obviously yes, but the biological system is so complex that it may be almost impossible to reproduce accurately the organizational element of processors is several levels removed from the protein level anyway; so we must turn to other methods capable of evolving modularity.

SOLUTIONS?

There are several different ways to introduce modularity into artificial evolution.

Firstly, we could try and code it into the string of the GA itself. This could perhaps be achieved by splitting the GA string into substrings, each of which represents a module. A similar proposal is to have a local string assigned to different parts of the network controlling how it evolves. This is representative of how the genes switch each other on or off as described above.

Another possibility is to try and model biology, not at the DNA level, but at the cellular level, by mimicking the way tissue is placed in the developing organism. This process is shown in Fig.4. The components first migrate to their places in the structure, then proliferate (become more numerous), then finally the wiring is set up locally (by an evolutionary algorithm).

From a pragmatic point of view, why not simply add modules to the circuit, as shown in Fig.5a and allow them to be wired locally by a Genetic Algorithm as in Fig.5b or Fig.5c? These are only some of the possibilities; others include using fractals, automata or special treelike rules to complete the circuit. However, whatever way is chosen, it is likely that not only the circuit will have to grow, but also the system which it is controlling at the same time. This is
because the brain of an organism did not evolve in isolation, but as part of the animal as a whole.

The exciting thing about Evolutionary Electronics is that we don’t know the answers yet and the experimentation lies within the ability of the ambitious amateur. Not only that, but this area could hold great rewards for the future of electronics.

ACKNOWLEDGEMENT

The authors would like to thank Ann Barbara Reddipogu, Sethuraman Mutharaman, Nicolao Capanni and David McMinn for their contribution to this article.

FURTHER READING

Modular Evolution: C. MacLeod et al, Evolution and Devolved Action, in appendix B of: D. McMinn, *Using Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous Systems*, PhD Thesis, The Robert Gordon University, 2002, available on request from the authors: email chris.macleod@rgu.ac.uk or g.m.maxwell@rgu.ac.uk.